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SECTION I

INTRODUCTION

This is the Final Report Qescribing research
performed on the "Manufacturing Methods for Production
of Field Effect Electron Emitters from Oxide-Metal
Composite Materials," contract number DAAHOl1-75-C-0852,
covering the period from 16 May 1975 through 15 November 1977.
The conclusion section of this Report (Section VI)
reviews and summarizes the significant accomplishments
of the entire contract period. This program was divided
into four tasks and the major objectives of these areas
are outlined in this section. However, prior to
considering the obhjectives, a brief review of the internal
floating zone technique employed in the growth of the
oxide-metal composites is presented. This description
provides valuable background information for interpreting
and evaluating the results of the various sections of
this report.

A modified floating zone technique was used to grow
oxide-metal composites.l'2 These materials typically

2, each

contain many millions of metallic fibers per cm
less than 1 um in diameter, uniformly embedded in an

oxide (insulating or semi-conducting) matrix. In this

----------------------
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technigque pressed rods of the oxide-metal mixture were
sintered inside rf-heated molybdenum tubes, in an inert
atmosphere, to densify and preheat the material. A
schematic diagram of the growth facility is shown in
Figure I-1l. After the initial heating, which also served
to increase the electrical conductivity of the oxides,
the molvbdenum tube heaters were separated to expose
approximately 2 cm of the rod to an rf field normally
between 3 to 5 megahertz (Mhz). Often only a single Mo
preheater was used, and in this configuration the Mo
tube was simplyvy lowered out of the coil to expose the
sample to the rf field. The concurrent increase of
temperature, electrical conductivity and resistance
heating continued until the interior of the rod melted
at temperatures up to 3000°C. The high radiant heat
loss from the surface and the inherent low thermal

conductivitvy of the oxides maintained the skin of the

rod well below the eutectic temperature of the mixture. :é;
The solid skin acted as a crucible to contain the molten
zone. Composite growth wvas obtained bv moving the molten 1:1
zone up through the rod. 1In practice a cavity was i
generated in the molten zone because of the difference in I&ﬁ.
density between the initial polycrvstalline rod and : a]

solidified composite. During growth the oxide and metal

melted from the roof of this cavity and solidified at ;Si:
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the base. 1In this program the composite growth was

limited to the system UO,-W, primarily because this o
oxide-metal combination formed well ordered fiber

geometries ideally suited for the fabrication of arrays

of field emitting pins.

The primary objective of this contract was to
establish procedures for producing melt-grown oxide-
metal composites in production quantities suitable for
use in the fabrication of field effect electron emitting
cathode structures. The research objective was divided
into four areas and the objective of these tasks are
briefly outlined below.

A. PROCUREMENT AND CHARACTERIZATION OF URANIA TUNGSTEN
POWDERS

In the routine melt growth of U0,-W composites the
most important parameter controlling the metal solubility
in the liouid urania is the o;ygen-to-uranium (0/U) ratio.
This requirement necessitated premelt control of the 0/U
ratio of the starting materials. Short and long term
oxidation rates were measured under conditions simulating
powder storage conditions. 1In an effort to increase the

size of the composite samples, it became necessary to

prefabricate dense UO,-W pellets using solid state
sintering. Particle characterization of urania powders
received from four vendors was correlated with their

densification behavior.
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B. THE DEVELOPMENT OF OPTIMUM COMPOSITE GROWTH PROCEDURES

The following parameters were considered in -
establishing optimum growth procedures for the Uoz-w
composites: Sample size, starting oxide-metal compositions,

solidification atmosphere, influence of premelting

ingot density, sintering atmosphere, solidification rate
and the control of the molten zone. As a result of
these studies a procgdure for the routine growth of U0, -W
composite ingots weighing up to 500 grams was established.
C. THE DEVELOPMENT OF MACHINING, BRAZING, AND ETCHING
TECHNIQUES FOR THE PRODUCTION OF FIELD
EFFECT ELECTRON EMITTERS

In order to utilize the composite materials as an
array of field emitting pins, the fabrication of a
cathode structure suitable for emission testing was
necessary. The potential need to condition the pins by
"in-situ" heating resulted in the screening of a number
of high temperature braze materials. Finding a suitable
metallic supporé compatible with the expansion character-

istics of the UO,-W emitters was a difficult task.

Standard diamond grinding was employed to machine the
different cathode geometries. Chemical etchants developed 3
previously were used to expose the W fibers. ﬁ&
oy
D. EVALUATION OF FIELD EMISSION PERFORMANCE OF i
PROTOTYPE EMITTERS }53:
ey
Testing of prototype field emission cathodes was s
accomplished during this research program. These tests e
-."\.:‘d
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included determination of the emission current capacity
of individual pins in an array; the comparative emission
performance of different array and pin tip geometries;
and an investigation into the problems associated with
operating a field emitter in a vacuum environment similar
to that required by conventional thermionic cathodes.
Based on the experimental results, array current

2 are achievable. Some of the

densities over 1 A/cm
possible mechanisms leading to pin failures are reviewed

and compared with pertinent experimental results.
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SECTION II == —J

PROCUPEMENT AND CHARACTERIZATION OF i
UO, AND W POWDERS Y

In the unidirectional solidification of UO,-W composites

the oxygen-to-uranium (0/U) ratio of the oxide is the
most important parameter controlling the successful
production of these materials. As a result, samples

of urania were obtained from four different vendors for
powder characterization, with emphasis on the measurement
and control of the 0/U ratio. The sample identification
and the supplier are tabulated in Table II-I. In

this section a description of the 0/U ratio determination
and associated errors in this measurement are described.
The 0/U ratio of the "as-received" powders was measured.
The oxidation and storage behavior of these oxides

was evaluated along with comparative moisture contents.
The long-term oxidation characteristics of hydrogen-
reduced powder was also studied since this treatment

was necessary to obtain a reproducible 0/U ratio in the
starting UO,-W pellets. Sintering properties also

became an important parameter becausg of the need to
predensify the UO,-W pellets, especially for the successful
solidification of the larger diameter samples. Scanning
electron microscopy of the powders and spectrographic

analysis for the metallic impurities are also reported.
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Table II-I. Uranium Dioxide Powders Used in
o Characterization Studies

Sample Supplier Assay Date**
A* Numec 8/23/73
B Exxon Nuclear 10/2/75
C Babcock & Wilcox 8/21/75
D Nuclear Fuel Services 10/29/75

*Sample A was from the U0, supplv that has been at
Georgia Tech for several years.

**The assay date is the date on which the radiocactivity
of the powder was last determined by the supplier.
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Finally, the urania powder characteristics necessary

for the successful growth of the Uoz-w composite = 25
structures are discussed. Eg%?

No comprehensive characterization of the tungsten ié:i
powders relative to their solidification behavior in _
the composites was undertaken. Tungsten powders from _ j
two vendors (Teledyne Wah Chang and Fairmount Chemical : .j

Company) were utilized .in the growth experiments and

both produced excellent tungsten fiber geometries.

During melting, the tungsten was completely dissolved

in the molten urania and lost all remnants of the

original particle characteristics. All impurities,

except perhaps for other refractory metals, were

vaporized at the extremely high UOZ-W'eutectic temperatures
and deposited in the cooler regions of the sample.

It was also established that small additions of tungsten,
typically 6 weight percent (w/o), had very little

influence on the sintering characteristics of the

urania powders.

A. DETERMINATION OF THE OXYGEN~-TO-URANIUM (O/U) RATIO =)

Urarium dioxide is a nonstoichiometric solid that iuﬁ
will slowly oxidize to U30g in air at room temperature.
The determination of the 0/U ratio was done by the

standard gravimetric method. The UO,,, was weighed in

a platinum crucible, oxidized to U;0, in air at 800°C, Xy




g e ol i
---------

AT
E.
b
1]
[}

T Tr—
;

AP o,

and reweighed. The weight gain was assumed to be
entirely from oxidation so the 0/U ratio could be
calculated using the atomic weights. There are two

main sources of error in this measurement: 1) weighing

W VR

- errors, and 2) moisture on the powder.

g Weighing errors, e.g., zero drift of the analytical
i balance, etc., was assumed to be + 0.0004 grams. A

b typical error analysis calculation gave an O/U ratio

EE accuracy of + 0.002 for a powder with an 0/U ratio

- of 2.050. This error was much less than that caused

Lo s

by absorbed moisture on the powder.

Calculation of the error due to moisture on the

‘s %

L
" .t

powder was much more complicated due to the inability

-'

to determine the exact amount of adsorbed water. Standard

T
L

P o
St

drying methods involving heating caused a change in the

e & & 4

.
" 'Aﬂ i

0/U ratio, so any weight change could not be attributed
! solely to the water. Since the water content of some
¥ of the "as-received" powder was undoubtedly at least

“~ 0.1 w/o, this parameter had a significant effect on the

! 0/U ratio determination. 2ny moisture increased the
E calculated 0/U ratio when the weight gain was assumed
3 to be solely caused by oxidation, because the loss of

moisture reduced the total weight gain resulting from

oxidation. Hence, the reduced weight gain indicated the

0/U ratio was larger than the "true" value. Table II-II
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' shows the effect of various moisture contents on the
\ apparent O/U ratio for five different starting values.
§ The moisture content is expressed as a weight percent
g

R

(on a dry basis)

RANAS |
.

Weight H,0

: 100%.
WeIght Pry U055, ~ 00

LA

The table shows, for example, that a powder containing
0.2 w/o moisture with a "true" 0/U value of 2.0508 will

vield an apparent O/U value of 2.0685. The error in

IPRRSSTAVER DT

0/U ratio from this source was about +0.01 to +0,03 for

g most "moist" Uo2 powders.

; The O/U ratios given in this report were calculated
g without anv attempt to correct for the expected increase
i in 0/U ratio due to moisture. When interpreting the 0O/U

data, for the "as-received" and "Hz-reduced" powders,

this uncertainty exists. The sintered bulk UO, pellets

were essentially drv and not subject to this error.
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B. STORAGE OF "AS-RECEIVED" POWDERS

Three hundred-gram batches of the four "as-received"

Uo2 powders were stored in screw top glass jars in order
to establish a uniform treatment procedure. Two gram
samples were taken from each jar for O/U ratio determinations.

Three weeks and eight months later, similar groups of

samples were tested in order to detect anv change in g
ﬁ stoichiometry during storage. Table II-III gives :{;
%. these results. SR,
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Table II-III. Room Temperature Oxidation Characteristics
of "As~Received" Urania Powders.

0/U Ratio % Increase
Power Supplier 11/14/75 12/6/75 7/12/76 for 8 mos.

r A-Numec 2.270 2.283 2.289 0.837
B-Exxon Nuclear 2.111 2.122 2.128 0.805
C-Babcock & 2.104 2.111 2.135 1.473

Wilcox (Numec)
Services

Samples A, B, and C showed a slight increase in O/U
ratio as expected due to the slow, natural oxidation pro-
cesses occurring at room temperature. Sample D displayed
an unexplained decrease in O/U ratio after the first

three weeks.

C. MOISTURE CONTENT

| In order to determine the moisture content of the
"as-received" UO,, . powders, a two-gram sample of each was
Flaced in a porcelain ignition crucible and stored in a
desiccator with Drierite desiccant. An empty crucible was
used as a control. Sample A showed a weight loss of 0.16%

which can be attributed to the drying of the powder. The

rest of the samples showed only very small weight changes,

all within the weighing error.
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D. OXIDATION PROPERTIES

Oxidation characteristics of the "as-received" powders -
(with different starting O/U ratios) were studied by
placing powders in a dryver held at 80°c and measuring
the 0/U ratio at intervals up to 100 hours. The oxidation
behavior for the different powders is shown in Figure II-I.
Sample A showed a significant decrease in the apparent
0/U ratio during the-first 24 hours, undoubtedly due to
the drying of the powder. Samples B, C, and D showed
only the slow rise in 0O/U ratio due to oxidation with no
veight decrease, because they were essentially dry at
the beginning of testing. The comparison of powder
oxidation behavior agreed with the moisture content
evaluation reported in the previous section.

For most UQ,-W composite growth experiments, however,
it was necessary to have urania with an intermediate
0/U ratio, ideally between 2.04 and 2.07. Accordingly,

a sample of the Exxon powder was reduced in Hy at 600°C
to an 0/U ratio of 2.00. It was then quenched in dry
ice and exposed to room temperature air until all of the

dry ice had sublimed. The powder was then stored in a

desiccator to limit moisture absorption. The 0O/U ratio
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% tatatscc e

after reduction anéd drv ice auench was 2.055, and after
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.
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2 months of storage the (/U ratio had increased to

S
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2.070. Continual storage for an additional 11 months
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OXYGEN-TO-URANIUM RATIO
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(13 months from the H, reduction) resulted in an O/U
ratio of 2.086. These data indicate reduced urania
powders may be stored several months and still maintain
the 0/U ratio at or below 2.07 in conventional laboratory

desiccators.

E. SINTERING PROPERTIES

Pellets of each "as-received" powder, weighing
56 grams, were fabricated by uniaxial pressing in a 19 mm
diameter die under a 2000 pound load. After preséing,
the pellets were sintered in N inside a Mo preheater tube
using induction heating. Conditions were identical to
the preheat period used in the small diameter UO,-W
composite growth experiments (one hour heating to
about 1400°C). The resultant shrinkage and densification

data are given in Table II-IV.

F. PARTICLE SIZE MEASUREMENT

An estimate of the particle size and shapes of
the different uo, powders was made using SEM examination.
Samples were mounted by placing a drop ¢{ a powder-
water suspension on an SEM stub and drying. Comparative
analysis of SEM micrographs provided only very general
information and indicated the average particle size of
all the powders was about 0.3 um. The particles in
Sample B (the Exxon powder) were more agglomerated than

those in the other three powders.
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G. SPECTROGRAPHIC ANALYSIS

Spectrographic analysis of the four urania samples
for metallic impurities was conducted at Oak Ridge
National Laboratory. The results are listed in
Table II-V. The impurities were similar in all powders,
with Fe and Si the major contamihants. In this
analysis, Samples C and E were identical and the
spectrographic results agreed very well, except for the

Fe content.

H. SUMMARY OF URANIA POWDER CHARACTERISTICS

As noted previously the most important parameter
coﬁtrolling the successful growth of the Uoz-w composites
was the oxygen-to-uranium ratio. However, because
UOg,x powders are unstable at room temperature and
slowly oxidize to U30g, it is impractical to attempt
to control the 0/U ratio during long term storage. To

obtain a reproducible starting 0O/U ratio is was

necessary to periodically reduce batches of urania powder

to UO7 oo in hydrogen, followed by a, controlled oxidation
to about UO3 g5. These povders could then be stored

in desiccators for several months and still maintain

an 0/U ratio below 2.07. This material, after blending
with tungsten powder, proved to the satisfactory for

sintering to form pellets suitable for internal melting

18
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Table II-V

Spectrographic Analysis of Uranium Dioxide Powders*,
Microgram of Element per Gram of Uranium Metal

Uranium Dioxide Powders

Element++ A B c 0 £
Al <2 8 8 10 10
8 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1
Ba <1 < <1 < 1 <)
Be < 0.1 < 0.1 < 0.1 < 0.1 < 0.1
Bi <1 <1 <1 < 1 <1
Ca <2 <2 5 < 2 8
Cd < 0.1 <0.1. < 0.1 < 0.1 <0.1
Co <1 <1 <1 < 1 <1
Cr <2 <2 10 5 10
Cu <2 <2 <2 < 2 <?2
Fe 10 <5 <5 < 5 30
Lt <2 <2 <2 < 2 <2
Mg <2 <2 2 < 2 <2
Mn <2 <2 <2 < 2 <2
Mo <2 <2 <2 < 2 <2
Na 10 25 7 15 7
Ni <2 <2 5 10 5
P <40 <40 <40 < 40 <40
Pb < 2 <2 <2 < 2 <2
sb <5 <5 <5 < 5 <5
Si <2 15 50 60 60
Sn <2 <2 <2 < 2 <2
Y <2 <2 <2 < 2 <2
In < 20 <20 <20 < 20 <20
*Supplier A . Numec

B Exxon Nuclear

C Babcock and Wilcox

D Nuclear Fuel Services

E Same as C for reproducibility check

** < means below detection limit
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(sinterihg and melting procedures are described in

Section III). Therefore no stringent 0/U ratio E
requirement is necessary in the procurement of urania

powders. As indicated in Table II-III most available

powders have ratios of 2.10 to 2.20. The only real

disadvantages to powders with 0/U ratios above 2.15

is the excessive amount of water liberated during the

reduction treatment.

An additional regquirement of these powders is the
need to sinter to densities of 85 to 95 percent of
.theoretical. Since densification must be accomplished
in a nitrogen atmosphere (for the control of the 0/U
ratio, as described in the next section) the enhanced
sinterability of hyperstoichiometric UO; can be utilized.
Most urania powders easily meet this density recuirement.

In summary, the nuclear grade urania powder specifications

are more than adequate for the procurement of material
for use in the growth of the unidirectionally solidified

UO,-W composites.

2 :;- 4
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SECTION III

DEVELOPMENT OF OPTIMUM COMPOSITE GROWTH PROCEDURES

This section describes the parameters studied in
an effort to optimize the routine melt-growth of UO,-W
composites using unidirectional solidification. Although
an effort was made to divide these parameters into the
subtopics listed in Table III-I, it should be noted that
most of these parameters are interrelated and affect

each other.

Table III-I. Parameters Controlling the Melt-
Growth of UO,-W Composites

A. Sample Size and Fiber Array Uniformity
B. Oxide-Metal Combosition

C. Solidification Atmosphere

D. Pre-Melt Ingot Stoichiometry and Density
E. Solidification Rate

F. Molten Zone Control

G. Cracking Characteristics

Prior to discussing the experimental results in detail,
it would be beneficial to briefly describe the "state
of the art" in the unidirectional solidification of
eutectic structures in the UO,-W system which existed
before this work was begun. The basic growth technigque

remains the same as described in the Introduction

21
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(Section I). Prior to initiating this study, the
critical influence of oxide stoichiometry on

tungsten solubility in molten urania was recognized.

The major problems in the routine and optimum growth

of UO,-W composites are summarized below. For uniform
fiber arrays to be grown for long lengths, it was
necessary to obtain and maintain a homogeneous solution
of the metal atoms in the molten oxide. It was seen,

in the early work, that the solidified oxide-metal
composites typically contained less metal than originally
used in the starting mixture. Conseaquently, any
reproducible and satisfactory growth scheme must conterd
with the continual depletion of the metal from the
molteh zone, predominantly through some type of vapor-
ization or oxidation process. In the case of Uoz—w,
this process was further complicated by the need to
maintain the stoichiometry (0/U ratio) of the molten
oxide above 2.00, since the increased oxygen potential
required to satisfy this reguirement aggravated the
tungsten oxidation and vaporization problems. In
addition, any modification of the growth scheme designed
to maintain steady state and uniform conditions during
solidification required that the system be maintained

at temperatures in the neighborhood of 2800°C, where

oxidation and vaporization reactions proceeded very
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rapidly. Because of these problems, in prior work the

successful oxide-metal composite growth was limited =

to lengths of about one centimeter. The decision was

made at the outset of this program to attempt to

increase the size of the starting samples, or ingots.

Increased sample size would yield larger areas of uniform

fiber array, and, hopefully, decrease the rate of metal

loss by increasing the mass-to-surface area ratio of

the molten material. Significant increases in sample

size and fiber uniformity were achieved and these results

are described in this section. BT
The growth parameters and general results of the

various grovwth runs are tabulated in Appendix A.

A. SAMPLE SIZE AND FIBER ARRAY UNIFORMITY

In previous UO_-W solidification experiments as

2
well as in preliminary runs conducted during this investi-
gation, sample pellets with unfired (green) diameters

of 19 mm and sintered diameters of about 16 mm were

employed. Since the kinetic reactions associated with

the very high temperatures required to grow Uoz-w

composites cannot be avoided, the decision was made to '"=4
increase the diameter of the ingots. Transverse sections
of the three different ingot diameters studied are shown

in Figure III-I. The smallest wafer (16 mm diameter)
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Figqure III-1l. Transverse Sections of 16,
25, and 32,Millimeter Diameter

Uoz-w Samples.
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is typical of the Uoz-w samples solidified prior to

this study, while the intermediate (25 mm) and large

diameter (32 mm) wafers are from experiments performed
c during this research.

Preliminary runs indicated that with minor adjust-
ments to existing equipment, including decreasing the
rf frequency from 3.7 to 3.4 megahertz, sintered
intermediate size ingots 25 mm in diameter (32 mm green)

could be easily melted and solidified. An encouraging

feature was the significantly larger cell sizes present

in the larger diameter samples. That improvement is

probably attributable to the wider and flatter liquid-

solid interface present in the larger samples. Evaluation

of those samples revealed that the uniformity of the

fiber geometries was also greatly improved compared to

the smaller samples, providing substantial areas of

uniform composite for the fabrication of emitter arrays.
Evaluation of fiber geometry uniformity of the

small (16 mm) diameter ingots revealed that the transverse

fiber density of UO,-W composites varied less than +10%

within several millimeters of the center of the

solidified zone. Density changes increased to +20% as

the distance from the center increased, and at the edge,

very large variations in density were observed. It

was also noted that fiber density generally decreased
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from the base to the top of the solidified zone.

Variations in fiber densities of the 25 mm diameter
samples followed the same trends displayed by the smaller
pellets, but were reduced by about one half.

A typical 25 mm diameter ingot, having a starting
composition of UO, 9-6 weight percent (w/o0) W and
solidified at 2.8 cm/hr, was sectioned at three levels
in the melt zone. Central and circumferential areas
of each wafer were examined using a scanning electron
microscope and representative pin densities and diameters
were measured from SEM photographs and recorded in
Table III-II. These results indicate that the fiber
diameter generally increased with decreasing fiber
density at both the centers and the edges of
the wafers. Based on this data, there is no apparent
trend in the relationship between center and edge pin
diameters. A typical SEM micrograph of uniform fiber
growth in the UO,-W composites is shown in Figure III-2.

Table III-II. Analysis of W Fiber Densities

and Diameters From Selected
Locations in Sample Number LBH-5A.

Level From Fiber Densitg Fiber Diameter
)

Slice Bottom of (106 pins/cm (um)
Number Zone (mm) center edge center edge
4 4 13.0 11.4 0.35 0.44
5 9 12.1 10.0 0.43 0.44
8 30 9.8 6.3 0.47 0.58
26
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Figure III-2. Uniform Tungsten Fiber Geometry
in Uoz-w Composite, SEM X500.
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Further experiments (LBH-1l, 12) designed to increase
the size of the starting ingots showed that uniform
fiber geometries could be grown in UO,-W samples that
are approximately 32 mm in diameter, but there were some
problems associated with the unidirectional solidification
of larger ingots. An analysis of the shape of the
solidified zone and associated void in these samples
suggested that there were substantial heat losses from
the top of the sample, and that the rf power penetration
depth was marginal for complete melting to the center
of the ingot. In an effort to overcome those problems,
the tank circuitry of the Lepel rf generator was modified
to decrease the frequency and improve power penetration;
but only a small change could be made (from 3.4 to 3.1 MH2)
without adversely affecting the efficiency of the generator.
Because of the problems associated with the use of
the large (32 mm diameter) ingots, including materials
utilization (500 grams per run versus 250 grams for the
25 mm diameter pellets), the 25 mm diameter sample size
was chosen for most experiments. While the utilization
of the 25 mm diameter UO,~W ingots yielded improved
eutectic geometries of increased size, it also required
isothermal pre-sintering of the ingots prior to internal

melting and resolidification. That requirement necessitated
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an investigation of stoichiometry changes and densification
during sintering as a parameter controlling the growth

of UO,-W composites. These areas are covered in later
parts of this section. HRaving selected an ingot diameter

of ~25 mm the investigation was directed toward the

effect of oxide-metal composition on the eutectic structures

in the Uoz-w samples.

B. OXIDE-METAL COMPOSITION

Past studies2 indicated that the unidirectional
solidification of 16 mm diameter ingots having a starting
composition of urania with an 0/U ratio of 2.04 and 6 w/o
tungsten yielded uniform fiber geometries ranging from
10 to 30 million fibers.per square centimeter. 1In
previous work it was often noted that uniform fiber
growth was obtained for only short lengths before
changing into degenerate morphologies unusable for the
production of emitter arrays.

During this investigation, the unidirectional
solidification of 25 mm diameter samples containing
U0, + 6 w/o W also yielded fiber densities from 5 to
30 million per square centimeter but the growth lengths
were substantially longer than had been achieved
previously. Therefore, since this composition also
appeared to be optimum for the intermediate-sized

samples, no further changes in oxide-metal composition

were made.
29
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The influence of solidification (growth) atmosphere
on the characteristics of U0,-W composites is discussed

in the following section.

C. SOLIDIFICATION ATMOSPHERE
Recent studies on molten pure urania indicated that

a Co-1 v/o CO, atmosphere yielded an O/U ratio near

2
2.033, and since tungsten solubility is substantial
at this 0/U ratio‘, the atmospheres tested were designed
to provide oxygen potentials that would establish 0/U ratios
in the molten oxide near 2.03. 1In UO,-W solidification
experiments where the inlet gas was monitored using a
gas chromatograph and consisted of CO with 0.1 v/o CO3,
the exit gas composition showed an extremely high
concentration of CO, (8-10 v/o) during the initial
melting. During the period of growth (approximately
90 minutes), the CO, content slowly decreased and
eventually stabilized at 0.3 v/o.

An experiment was run to ascertain the 0/U ratio
obtained when a pure U0y, g4 sample was melted and held
until the exit gas reached the C0-0.3 v/o Co2 composition.
Post-melting analysis showed the 0/U ratio was 2.023.
In an additional test, the Mo pre-heater was run at
approximately 1400°C without any oxide-metal mixture
in the C0-0.1 v/o CO2 mixture, and again the equilibrium

concentration of Co2 was about 0.3 v/o. This behavior
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suggests the reaction, 2CO =+ C + C02, occurred in the
system. Conclusive evidence for this reaction was the
presence of carbon black found on samples and support
fixtures. Similar samples, grown in a Co-1.0 v/0 CO2
atmosphere, displayed a similar pattern, reaching an
eouilibrium CO2 contentration of about 1.2 v/o.

The atmosphere consisting of C0-1.0 v/o CO2 was
selected for use in most of the UO,-W solidification
experiments because the resultant oxygen potential in
the molten urania resulted in adequate tungsten solubility
(~3 w/o). Furthermore, obtaining CO, contents less than
1l v/o was difficult using conventional gas flow meters.

Having established the size, metal content of the.
U0, =W ingots and the atmosphere.used during the growth
procedure, an evaluation of the effects of the 0/U ratio
of the oxide (as determined by sintering parameters) and
of the bulk density of the pellets on eutectic structures

was undertaken.

D. PRE-MELT INGOT STOICHIOMETRY AND DENSITY

With the efforts to increase the size of the
solidified UO,-W ingots it was discovered that a separate
sintering (densification) step was necessary in ofder to
form dense cylinders suitable for internal melting.

Consequently the 0/U ratio and sample density after
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sintering became important parameters controlling the

successful growth of the UO,-W composites. 1In this -

evaluation a series of experiments was performed in

which reducing, neutral, and oxidizing atmospheres were

utilized during the sintering of samples LBH-16, -18, and

-19, respectively. The starting compositions of all

samples was urania with an 0/U ratio of 2.07 mixed with

6 w/o tungsten metal. 1Included with each sample during

sintering was a smaller U02-W pellet for the purpose

of establishing the sintered, pre-growth microstructure

of the pellets, and a pure UO, pellet for evaluating

the post-sintering 0/U ratio. Green densities of the

as-pressed oxide-metél pellets were 4.65+0.05 g/cc. All

samples were sintered at 1400°C for 4 hours during a

36-hour total firing cycle. The sintering parameters

and associated properties are listed in Table III-III.
The reducing atmosphere used in experiment: LBH-16

consisted of N, + 30 v/o Hy. The sample pellet had a

fired density of 8.83 g/cc and an 0/U ratio of 2.00, with
Table III-IIXI. Atmospheres Used, and Resulting

Properties of Samples Used in
Sintering Study.

Sample Sintering Fired Fired
Atmosphere Density (g/cc) 0/U Ratio
LBH-16  N,:30v/0 H, 8.83 2.00 55
]
g
- 1
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the tungsten appearing as elemental metal particles in
the oxide matrix (Figure III-3). After unidirectional -

solidification, using standard procedures in a. CO-1l v/0 CO2

atmosphere, the pellet was longitudinally sectioned. A
reasonably well-developed solidified zone was present
(Figure IXI-4), but no metal fibers were found and most
of the W appeared as metal droplets frequently associated
with pores. This behavior was expected, since tungsten
solubility is very limited in molten urania with an

0/U ratio near 2.00.4 During solidification of this
sample, initial analysis of the exit gases (using the

gas chromatograph) showed a decrease in COy content from
the inlet analysis of 1.0 v/o to about 0.15 v/o, indicating
that the sample was extracting oxygen from the atmosphere.
However, CO content of .the exit gas gradually increased
and was about 0.95 v/o at the end of the run.

Nitrogen £flowing at 300 cc/min was the "neutral"
atmosphere used in experiment LBH-18. This atmosphere
produced a sintered oxide-metal sample with a density
of 9.77 g/cc, and an O/U ratio of 2.01. Microscopic
examination (Figure III-5) showed that the pellet

consisted of UO, with no preferred grain boundary or pore

2
orientation. The tungsten was present as rounded metal

particles often surrounded by a "blue" phase (with an

approximate formula of U _WO,). This phase has been ?Sy
frequently seen in the cell boundaries of the UO,-W o
composite samples after solidification. ;;E
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Figure III-3. Photomicrograph of UO,-W Sample Sintered
in a Reducing Atmosphere (H3/N;) Showing
Elemental Metal and Oriented Oxide Grains,

X196.
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Figure III-4.

Post-Run Longitudinal Section of
UO,-W Sample Sintered in a Reducing
Atﬁosphere, (LBH-16) .
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Figure III-5. Sample Pellet Sintered in a Neutral

Atmosphere (N,) Showina Rounded

Metal Particles Surrounded bv "Blue
Phase", X542.
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After unidirectional solidification of sample
LBH-18 using standard procedures, extensive areas of
"good" fiber growth were observed with a few small areas
of the "blue" phase in the grain (cell) boundaries. Gas
chromatograph traces of the exit gas during this experiment
showed a brief but large outgassing of oxygen (reflected

by a high CO, content) as melting was initiated. The

2

presence of CO, in the exit gas slowly decreased until

2
a final value of about 1.3 v/o was reached near the end
of the experiment.

An oxidizing atmosphere consisting of CO2 flowing
at 300 cc/min was used during the sintering of the UO5-W
pellet during experiment LBH-19. After sintering, the
0/U ratio was 2.10, and the pellet appeared grainy and
porous (Figure III-6) and had a density of 9.17 g/cc.
During solidification in the standard CO-1 v/o CO,
atmosphere, extreme outgassing and vaporization from
the pellet coated the atmosphere-containment tube and
it was not until the end of the run that it was discovered
that the pelle. *ad expanded during internal melting and
stuck in the molybdenum post-heater. Because of this
difficulty, molten zone travel was limited to approximately
1l cm (Figure III-7). However, after two hours of
stationary melting, there was still enough W dissolved

in the molten oxide to produce aligned fibers as the
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Figure III-6.

Sample Pellet Sintered in an
Oxidizing Atmosphere (Coz)
Showing Extreme Porosity, X196.
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Figure III-7. Sample LBH-19 After Growth Run
Showing Area of Good Growth at
Top of Solidified Zone.
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melt solidified during cooling. This behavior suggested
that higher 0/U ratios may help in the effort to produce
long lengths of uniform composite materials. Exit
gas analysis during experimgnt LBH-19 showed a very
high initial volume of CO,, that decreased to about
3 v/o during the two and one-half hour run. This
behavior indicated a continual removal of oxygen from
the sample throughout the experiment.

Experiment LBH-5, using a sample with a very high
0/U ratio (2.20) and a corresponding increase in metal
content to 12 w/o, was run in the CO-1 v/o Co2 atmosphere
in an attempt to grow long lengths of continuous fibers.
During melting, a very irregular, unstable zone was
formed, and post solidification examination<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>